
Getting Started with UNIX

References : Sumitabha Das

Lecture – 17

Getting Started with UNIX

References : Sumitabha Das

SECTION -C

Introduction
 Running jobs in background
 UNIX vi- editor

Running Jobs in Background:

 A multi-tasking system lets a user to do more than one

job at a time. Since there can be only one job in the

foreground, the rest of the jobs have to run in the

background.

 There are two ways of doing this – with the shell’s &

operator and the nohup command.

 The latter permits you to log out while your jobs are

running, but former doesn’t allow that (except in the C

shell and Bash)

(1) & : No Logging Out :
 The & is the shell’s operator used to run a process in the

background. The parent in this case doesn’t wait for the child’s
death.

 Just terminate the command line with an & ; the command will
run in the background:
$ sort –o emp.lst emp.lst &
550 The job’s PID

 The shell immediately returns a number –the PID of the invoked
command(550) . The prompt is returned and the shell is ready
to accept another command even though the previous
command has not been terminated yet.

 The shell, however, remains the parent of the background
process Using an & you can run as many jobs in the
background as the system load permits.

 Background execution of a job is a useful feature that you
should utilize to transfer time –consuming or low- priority jobs to
the background, and run the important ones in the foreground.
Here, discipline is very important as significant weakening of

(2) Nohup : Logout safely:
 Background jobs ceases to run, however, when a

user logs out (the C shell and Bash excepted).
 That happens because her shell is killed. And when

the parent is killed, its children are also normally
killed (subject to certain conditions). The UNIX
system permits a variation in this default behaviour .

 The nohup (or no hangup) command, when
prefixed to a command, permits execution of the
process even after the user has logged out. You
must use the & with it as well:

$ nohup sort emp.lst &
586
Sending output to nohup.out

 The shell returns the PID this time too, and some shells
display this message as well.

 When the nothup command is run in these shells,
nohup sends the standard output of the command to
the file nohup.out.

 If you don’t get this message, then make sure that you
have taken a care of the output, using redirection if
necessary.

 You can now safely log out of the system without
aborting the command.

 When you use the ps command after using nohup from
another terminal(and it has not been completed
already), you’ll notice something quite significant:
$ ps –f -u kumar

UID PID PPID C STIME TTY TIME COMMAND
kumar 586 1 45 14:52:11 01 0:13

 Looks what happen this time. The shell died (rather, was
killed) on logging out but its child (sort) didn’t ; it turned
into an orphan.

 The kernel handles such situations by reassigning the
PPID of the orphan (sort) to the system’s init process
(PID 1) – the parent of all shells. When the user logs
out, init takes over the percentage of any process run
with nohup.

 In this way, you can kill a parent (the shell) without
killing its child (sort).

 If you run more than one command in a pipeline, you
should use the nohup command at the beginning of
each command in the pipeline:
nohup grep ‘director ‘ emp.lst & | nohup sort &

 (The grep command allows you to search one file or multiple files for lines
that contain a pattern. Exit status is 0 if matches were found, 1 if no
matches were found, and 2 if errors occurred.

UNIX: vi Editor
General Introduction:

The vi editor (short for visual editor) is a screen editor
which is available on almost all Unix systems. vi has no
menus but instead uses combinations of keystrokes in
order to accomplish commands.

Starting vi
To start using vi, at the Unix prompt type vi followed by a

file name. If you wish to edit an existing file, type in its
name; if you are creating a new file, type in the name you
wish to give to the new file.

$ vi filename
Then hit Return. You will see a screen similar to the one

below which shows blank lines with tildes and the name
and status of the file.

~
~
"myfile" [New file]

vi's Modes and Moods
 vi has two modes: the command mode and the insert

mode.
 It is essential that you know which mode you are in at

any given point in time.
 When you are in command mode, letters of the

keyboard will be interpreted as commands.
 When you are in insert mode the same letters of the

keyboard will type or edit text. vi always starts out in
command mode.

 When you wish to move between the two modes, keep
these things in mind. You can type i to enter the insert
mode.

 If you wish to leave insert mode and return to the
command mode, hit the ESC key. If you're not sure
where you are, hit ESC a couple of times and that

General Command Information
vi uses letters as commands. It is important to note that in

general vi commands:
 are case sensitive - lowercase and uppercase command

letters do different things
 are not displayed on the screen when you type them
 generally do not require a Return after you type the

command.

Entering Text
 To begin entering text in an empty file, you must first

change from the command mode to the insert mode.
 To do this, type the letter i. When you start typing,

anything you type will be entered into the file.
 Type a few short lines and hit Return at the end of

each of line. Unlike word processors, vi does not use
word wrap.

 It will break a line at the edge of the screen.
 If you make a mistake, you can use the Backspace key

to remove your errors.
 If the Backspace key doesn't work properly on your

system, try using the Ctrl h key combination.

A Quick Word about Customizing Your vi
Environment

 There are several options that you can set from within
vi that can affect how you use vi.

 For example, one option allows you to set a right
margin that will then force vi to automatically wrap
your lines as you type.

 To do this, you would use a variation of the :set
command.

 The :set command can be used to change various
options in vi. In the example just described, you could,
while still in vi, type :set wrapmargin=10 to specify
that you wish to have a right margin of 10.

 Another useful option is :set number. This command
causes vi to display line numbers in the file you are
working on.

Useful vi Commands
Cut/Paste Commands:
 x delete one character (destructive backspace)
 dw delete the current word (Note: ndw deletes n

numbered words)
 dd delete the current line (Note: ndd deletes n

numbered lines)
 D delete all content to the right of the cursor
 d$ same as above
 :u undo last command
 p, P paste line starting one line below/above current

cursor location
 J combine the contents of two lines

Cursor Relocation commands:
 :[n] goto line [n]
 shift g place cursor on last line of text
 h/l/j/k move cursor left, right, down and up
 ^f/^b move forward, backward in text, one page
 ^u/^d move up, down one half page
 $ move to end of line
 0 move to beginning of line

Entering the Insert Mode:
 i Begin inserting text at current cursor location
 I Begin inserting text at the beginning of the current line
 a Begin appending text, one character to the right of

current cursor location
 A Begin appending text at the end of the current line
 o/O Begin entering text one line below\above current

line
 ESC Exit insertion mode and return to command

mode

Applications
 To Kill a specific background job using kill %
 If you want to kill a specific background job use,

kill %job-number. For example, to kill the job 2
use

kill %2

 To kill a foreground jobs, 4 Ways to Kill a
Process — kill, killall, pkill, xkill.

Research
 Running Background Job (matlab example)
 Running a background job on the linux machines allows you to run your code

on fast machines for an extended time without having to stay logged
in. (Remember to adhere to our policies on number of jobs, where you can
run them and breakpointing.) Though this documentation page uses matlab
as an example, this would apply to C code, or R. For running multiple jobs in
succession see the documentation page on shell scripts. The shell is what
you type commands in, and is a complex scripting tool on its own.

 To run background job, first you must log in via ssh to a linux machine. This
can be accomplished using the PuTTY client on Windows, or using the ssh
command from a terminal on MacOS. You can also ssh from one linux
machine to another.

 Once on a linux machine, let's analyze a line that starts a background job:
 rohan$ matlab -nodesktop -nodisplay < file.m &> file.out &
 or for R: rohan$ R --no-save < file.R &> file.out &
 "rohan$" is just the prompt with the hostname that you will see.
 matlab is the command to start matlab. Since we are no working graphically

(you can't display graphics in a background job) we add the "-nodesktop -
nodisplay" so that matlab doesn't try to start graphics and crash.

